
2026/02/02 11:47 1/2 Tests unitaires

Wiki SIO Chaptal - https://wiki.siochaptalqper.fr/

Tests unitaires

Principes

Le concept de tests n'est pas une nouveauté. Depuis toujours, tester le code fait partie intégrante de
l'activité quotidienne d'un développeur. Attention ! On parle bien ici de tests (au sens d’une
démarche dédiée à amener un code vers un niveau de qualité optimal) par opposition à de la mise au
point (au sens d’une pratique destinée à rendre un code simplement opérant).

Dans un certain nombre de contextes de développement aujourd’hui, cette activité se place au cœur
du processus de conception (Méthodes Agiles ou encore TDD). Il y a plusieurs raisons à cela :

Concevoir le test d'un service, avant même d'avoir codé le service à tester : favorise la
modularité (petites unités à tester) et la concision (le développeur n'implémente que l'essentiel)
;
Plus un bogue est détecté tôt, plus facile sera sa correction et moins il coûtera ;
Disponibilité d'outils de tests en open source ;
Bonne intégration de ces outils dans les ateliers de génie logiciel (ex. Win’Design) ;
Qualité générale du code développé. Facile à maintenir et à tester ;
Possibilité de concevoir des batteries de tests que l’on peut rejouer à la demande ou
automatiquement (intégration continue), ce qui participe d’une démarche « industrielle ».

Typologie des tests

Tests unitaires : destinés à vérifier la conformité des unités élémentaires de programme
(procédures, fonctions, méthodes).

Tests de non-régression : lorsqu’on intervient sur un code qui passait positivement une batterie de
tests auparavant, il faut nécessairement s’assurer que cette même batterie de tests continue de
produire un résultat positif après intervention. C’est ce qu’on appelle des tests de non-régression car,
en effet, parfois on pourrait corriger une anomalie ou améliorer une fonctionnalité avec succès mais
au prix d’un changement notable dans le comportement de détail. Ce qui ne serait pas tolérable.

Tests d’intégration : destinés à vérifier la conformité de composants distincts que l’on vient
d’assembler entre eux. Au préalable, ces composants auront été testés séparément via des tests
unitaires. Ici, c’est la bonne communication ou coopération entre ces composants qui est visée,
essentiellement.

Tests fonctionnels : destinés à vérifier la conformité d’un ensemble de composants en référence à
un ou plusieurs cas d’utilisation. Ici, on ne soucie pas de l’implémentation technique sous-jacente, on
déroule des scenarii « métier » à partir des interface utilisateur. Ces tests valident le bon
comportement du logiciel en matière de service rendu.

Tests de charge : destinés à vérifier la capacité d’une application à supporter une charge
supplémentaire. Il pourra s’agir d’une charge d’utilisateurs ou de données qui auront un impact sur
les performances et la volumétrie du stockage.



Last update: 2023/04/03 16:23 bloc3:testsunitaires https://wiki.siochaptalqper.fr/doku.php?id=bloc3:testsunitaires&rev=1680531833

https://wiki.siochaptalqper.fr/ Printed on 2026/02/02 11:47

Tests de vulnérabilité : tests destinés à vérifier le niveau de sécurité d’un composant ou d’une
application.

Tests unitaires

Un test unitaire est un programme qui vérifie le bon fonctionnement d’une unité fonctionnelle
élémentaire (une procédure, une fonction ou une méthode) au travers de situations déduites des
spécifications de l’unité testée : à partir de données particulières en entrée, le test sollicite l’unité et
confronte les données réellement obtenues avec celles théoriquement attendues. Il en déduit alors un
état de succès ou d'échec.

La couverture des tests désigne le rapport entre le nombre de situations testées et le nombre de
situations possibles. Par principe, la couverture des tests n'est jamais complète car il n’est pas
raisonnable, et souvent pas envisageable, d’imaginer tester toutes les situations possibles. On se «
contentera » donc de recenser les cas de tests les plus remarquables.

Prudence

Attention ! La réussite des tests ne permet évidemment pas de conclure au bon fonctionnement du
logiciel (Test informatique).

On essaye cependant, avec rigueur mais assez empiriquement, de faire en sorte que si un bogue est
présent, le test le mette en évidence, notamment en exigeant une bonne couverture des tests :

• Couverture en points de programme : chaque point de programme doit avoir été testé au moins une
fois ; • Couverture en chemins de programme : chaque séquence de points de programme possible
dans une exécution doit avoir été testée au moins une fois (impossible en général) ; • Couverture
fonctionnelle : chaque fonctionnalité doit être vérifiée par au moins un cas de test.

Selon la complexité du logiciel, des séquences de vérification globale peuvent s'avérer nécessaires.
Celles-ci mettent en jeu la maîtrise d'ouvrage et toutes les composantes du projet, au-delà du logiciel
lui-même (processus, organisation, formation, accompagnement du changement) : réception,
qualification, certification, homologation, simulation, VABF (vérification d'aptitude au bon
fonctionnement) … les termes varient selon les contextes. Exemples d’environnements de tests
unitaires

PHP : PHPUnit, Atoum, SimpleTest JAVA : JUnit .NET : NUnit

From:
https://wiki.siochaptalqper.fr/ - Wiki SIO Chaptal

Permanent link:
https://wiki.siochaptalqper.fr/doku.php?id=bloc3:testsunitaires&rev=1680531833

Last update: 2023/04/03 16:23

http://fr.wikipedia.org/wiki/Test_%28informatique%29
https://wiki.siochaptalqper.fr/
https://wiki.siochaptalqper.fr/doku.php?id=bloc3:testsunitaires&rev=1680531833

	Tests unitaires
	Principes
	Typologie des tests
	Tests unitaires
	Prudence


