2026/02/02 08:40 1/3 JUnit

JUnit

JUnit est un framework de tests unitaires dédié a Java. La présente fiche vaut pour JUnit 4 dans
I'environnement NetBeans.

Création d'une classe de tests

1wmnw Help _

55 Apply Diff Patch... |
Diff...]
Add to Favorites

Open in Terminal

. . N . Analyze Javadoc
Sélectionner la classe a tester puis, dans le menu .

choisir Create / Update Tests W Create/Update Tests

Internationalization
Open Java Platform Shell

) Create/Update Tests b4

Class to Test: my.ap.ConfiglP

Class Name:

Location: Test Packages

i Frameworle JUnitd w J

Code Generation

Method Access Levels Generated Code

V| Public | Test Initiakizer
Dans la boite de dialogue qui s'ouvre, | Protected] Test Finalizer
choisir impérativement JUnit4 et valider. 7| Package Private /] Test Class Initializer
| Test Class Finalizer
7| Default Method Bodies
Generated Comments

+| Javadoc Comments

+'| Source Code Hints

ance || el

Wiki SIO Chaptal - https://wiki.siochaptalgper.fr/

https://wiki.siochaptalqper.fr/lib/exe/detail.php?id=bloc3%3Ajunit&media=bloc3:junit-create2.jpg
https://wiki.siochaptalqper.fr/lib/exe/detail.php?id=bloc3%3Ajunit&media=bloc3:junit-create3.jpg

Last update: 2023/12/15 09:51 bloc3:junit https://wiki.siochaptalgper.fr/doku.php?id=bloc3:junit

Il est aussi possible de créer une Suite de tests qui fabriquera la classe de test de chaque classe
existante dans un package. Une suite de test permettra alors de lancer I'ensemble des tests en une
seule demande.

Création d'une méthode de test

Une méthode de test est faite pour tester une méthode de la classe testée. On aura donc un lien
direct entre la méthode testée et sa méthode de test. Pour concrétiser cette réalité, une convention
consiste a appliquer le méme nom aux deux méthodes puis a préfixer ou postfixer celui de la
méthode de test par le phoneme “test”.

On pourra aussi avoir plusieurs méthodes de test pour une seule méthode a tester. Dans ce cas, on
enrichira le nom de chaque méthode de test avec un descriptif aussi clair et concis que possible.

Une méthode de test est une procédure (type retour : void) qui n'accepte aucun parametre.

@Test
void testToHTML CasGeneral
Object! | unTableau "A","B","C"
int n

String expected
"<table><tr><td>A</td></tr><tr><td>B</td></tr><tr><td>C</td></tr></table>"
String actual = HTMLUtil.toHtml (unTableau, n
.assertEquals (expected, actual

Assertions

Les assertions sont I'outil qui permet de raisonner sous la forme de “Cas de test” : une situation en
entrée doit produire une situation en sortie. Les assertions permettent de vérifier chaque cas en
vérifiant que la situation effective en sortie est conforme a celle attendue.

Assertion Descriptif

Vérifient qu'une donnée résultat est bien, respectivement, Vraie ou
assertTrue et assertFalse

Fausse

assertNull Vérifie qu'une donnée résultat est Null

assertEquals et Vérifient qu'une donnée résultat est bien égale a une donnée attendue.
assertSame La seconde est plutot a usage des tableaux et objets.
assertThrows Vérifie qu'une exception est bien produite.

Fait échouer le test sans condition. Utilisé notamment comme

fail indicateur qu'un test n'est pas encore totalement implémenté.

Activation / Désactivation d'une méthode de test

Pour activer une méthode de test, il faut la faire précéder par I'annotation @Test.
Pour désactiver une méthode de test, il faut la faire précéder par I'annotation @lgnore.

https://wiki.siochaptalgper.fr/ Printed on 2026/02/02 08:40

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+object
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

2026/02/02 08:40 3/3 JUnit

L'absence d'annotation @Test produit le méme effet que @Ignore mais n'est pas conseillée car non-
explicite.

Traitements pré-test et post-test

Dans certains cas, il sera nécessaire de réaliser @BeforeClass

des traitements avant ou aprés chaque test. void setUpClass
Les méthodes setUp et tearDown associées

respectivement aux annotations @Before et

@After peuvent étre utilisées pour réaliserun @AfterClass

traitement qui s'exécute avant ou aprés chaque void tearDownClass
test.

Dans le méme esprit, les méthodes setUpClass

et tearDownClass associées respectivement @Before

aux annotations @BeforeClass et @AfterClass void setUp
peuvent étre utilisées dans le but d'exécuter un

traitement avant ou apres les tests mais, dans

ce cas, une seule fois pour toute la batterie des @EAfter

tests. void tearDown

Exécution d'une classe de tests

L'exécution d'une classe de test se fait en W BRI
cliquant-droit sur cette classe (ou la classe W E"_;i‘f,’,’:f';;j”"'
testée) et en choisissant Test File. o QO testTol ML CusGeners

¢ & testToHTML_UnElement

ﬂ test ToHTML_VideNPositif
'ﬁ bt ToHTML_Demandelero

Toutes les méthodes de test annotées @Test d
, , o L & @) bestToHTML VideNNEgatit
sont exécutees mais l'ordre de leur exécution % © testToHTML N5upK

n'est pas garanti. @ testToHTML_DemandedSur?

) 1=t ToMTML_DemandeNMcins|
ﬂ et ToHTML_Vide

4

Les résultats sont présentés en fin d'exécution
dans l'onglet Tests results.

From:
https://wiki.siochaptalgper.fr/ - Wiki SIO Chaptal

Permanent link:
https://wiki.siochaptalqper.fr/doku.php?id=bloc3:junit

Last update: 2023/12/15 09:51

Wiki SIO Chaptal - https://wiki.siochaptalgper.fr/

https://wiki.siochaptalqper.fr/lib/exe/detail.php?id=bloc3%3Ajunit&media=bloc3:junit-results.jpg
https://wiki.siochaptalqper.fr/
https://wiki.siochaptalqper.fr/doku.php?id=bloc3:junit

	JUnit
	Création d'une classe de tests
	Création d'une méthode de test
	Assertions

	Activation / Désactivation d'une méthode de test
	Traitements pré-test et post-test
	Exécution d'une classe de tests

