
2026/02/02 13:35 1/5 Versioning - Outillage et bonnes pratiques

Wiki SIO Chaptal - https://wiki.siochaptalqper.fr/

Versioning - Outillage et bonnes pratiques

Rappel

La versioning est un méthode de gestion de version qui consiste à historiser les modifications
faites dans le code source d'un projet par les développeurs qui y contribuent successivement.

En cas de besoin, il est alors possible de revenir en arrière, comparer des versions antérieures du
code, corriger des anomalies, toutes actions de maintenance qui sont liées à un état historique précis
(version).

Il existe deux produits largement employées pour le versioning :

Git : technologie moderne, décentralisée, imaginée par Linus Torvalds (auteur de Linux)
SVN : implémente la technologie SubVersion, ancienne, rustique et centralisée mais éprouvée

Git

Principes

Chaque développeur possède une copie complète du projet, ce qui permet de travailler hors
ligne et de collaborer facilement sans modifier forcement le code du ou des autres
développeurs.
Chaque modification apportée aux différent fichiers est enregistrer lors de l'envoie sur le
serveur Git, permettant de revenir à des versions antérieures, de comparer les
changements ou de fusionner les modifications de différents développeurs.
Une autre fonctionnalité de Git est de permettre de créer des branches, des copies
indépendantes du projet, pour développer des fonctionnalités ou corriger des bugs sans
affecter le code principal. Les branches peuvent ensuite être remonter dans la branche du
projet principal.
Il est possible de contrôler l'accès au différente branche du projet, en définissant des niveaux
de permissions pour les différents utilisateurs.



Last update:
2025/04/22
10:55

bloc2:prog:gen:versioning-prat https://wiki.siochaptalqper.fr/doku.php?id=bloc2:prog:gen:versioning-prat&rev=1745312158

https://wiki.siochaptalqper.fr/ Printed on 2026/02/02 13:35

Les principales opérations Git

- git init Initialise un nouveau Git dans un répertoire.
- git add: Ajoute des fichiers au “staging area”, qui est une zone intermédiaire avant de valider les
modifications.
- git commit: Valide les modifications du “staging area” dans l'historique du référentiel.
- git status: Affiche l'état du référentiel, les fichiers modifiés et les changements non validés.
- git log: Affiche l'historique des commits du référentiel.
- git branch: Crée, liste ou supprime des branches.
- git checkout: Permet de passer d'une branche à une autre ou de revenir à une version antérieure.
- git merge: Fusionne une branche dans une autre.
- git pull: Télécharge les dernières modifications du référentiel distant et les fusionne dans la
branche locale.
- git push: Envoie les modifications locales vers le dépôt de projet distant.

https://wiki.siochaptalqper.fr/lib/exe/detail.php?id=bloc2%3Aprog%3Agen%3Aversioning-prat&media=bloc2:prog:gen:nhdexzn_-_imgur.jpg


2026/02/02 13:35 3/5 Versioning - Outillage et bonnes pratiques

Wiki SIO Chaptal - https://wiki.siochaptalqper.fr/

Usages

Git est utilisé dans de nombreux contextes, notamment pour :
- développer des logiciels collaborer avec d'autres développeurs sur un projet commun et suivre
les modifications apportées tous au long du projet.
- des collaboration entre scientifique, notamment pour gérer les différente données de recherche,
les analyses et les publications.

Références

https://git-scm.com/docs/git/fr
Y compris liens vers des ressources Internet synthétiques

SVN

Les principales opérations SVN

CHECKOUT : Importation sur un client d’un projet mis en partage sur un serveur SVN
UPDATE : Synchronisation du projet, du serveur vers le client (download des mises à jour)
COMMIT : Synchronisation du projet, du client vers le serveur (upload des mises à jour)
DISCONNECT : Déconnexion du partage (avec ou sans suppression des fichiers SVN locaux)

Organisation SVN

Sur un serveur SVN, le projet, les Branches et les Tags sont stockés dans des dossiers spécifiques
nommés res-pectivement « trunk », « branches », et « tags ». Ce n’est qu’une convention de
nommage que vous êtes libres de respecter ou d’adapter, mais les bonnes pratiques vous conduiront
naturellement à adopter ce nommage. L’intérêt des étiquettes sous Subversion est d’utiliser des
noms symboliques plutôt que des numéros de révisions pour se référer à un état précis, comme par
exemple ’release-1.1’, plutôt que ’488’. Un nom symbolique permet de revenir facilement à une
version identifiée. Pour créer un tag, il suffit de copier l'état actuel d'une version de développement

https://git-scm.com/docs/git/fr
https://wiki.siochaptalqper.fr/lib/exe/detail.php?id=bloc2%3Aprog%3Agen%3Aversioning-prat&media=bloc2:prog:gen:versioning-prat.png


Last update:
2025/04/22
10:55

bloc2:prog:gen:versioning-prat https://wiki.siochaptalqper.fr/doku.php?id=bloc2:prog:gen:versioning-prat&rev=1745312158

https://wiki.siochaptalqper.fr/ Printed on 2026/02/02 13:35

dans un sous-répertoire du dépôt. Les règles suivantes sont communément admises :

Liste à puceLes différents tags correspondent chacun à un sous-répertoire, lui-même contenu
dans un sous-répertoire nommé tags du projet ;
On ne « commit » pas dans un tag ;

En fonction de l’ampleur et du nombre de projets contenus dans votre dépôt, l’emplacement de ces
trois dos-siers peut varier. Il existe en fait deux formes recommandées en fonction de vos besoins :

Quelle que soit l’architecture choisie pour les dossiers de base, l’utilisateur crée tous les dossiers
intermédiaires librement. Par exemple, la branche « germanVersion » pourra être stockée dans le
dossier branches/germanVersion.
À consulter : http://www.lacl.fr/gava/cours/M2/IngLog/annexe3.pdf

Bonnes pratiques

Gestion macroscopique du développement

La gestion de versions n’est pas un mécanisme de sauvegarde, mais un mécanisme de travail
collaboratif. Il n’est donc pas question de remonter les modifications « microscopiques » apportées
aux fichiers aussi souvent qu’on les enregistre localement, au cours de la mise au point.

On ne remontera que des modifications dont on sait qu’elles sont opérantes au regard d’un besoin
global exprimé. Par exemples : « validation W3C des interfaces », « Améliorations fonctionnelles dans
la gestion du panier », etc.

Synchronisation descendante

Lorsque l’on fait du versioning « collaboratif », la copie locale du projet sur laquelle on travaille a de
grandes chances de ne pas être à jour puisqu’on n’est pas seul à travailler dessus. Pour limiter les
risques de conflits et ne pas atteindre les limites offertes par le mécanisme du versioning, il faut
systématiquement :

en SVN, faire précéder un COMMIT par un Update to HEAD ;
en Git, faire précéder un PUSH par un PULL/Merge ;

https://wiki.siochaptalqper.fr/lib/exe/detail.php?id=bloc2%3Aprog%3Agen%3Aversioning-prat&media=bloc2:prog:gen:versioning4.png
https://wiki.siochaptalqper.fr/lib/exe/detail.php?id=bloc2%3Aprog%3Agen%3Aversioning-prat&media=bloc2:prog:gen:versioning4.png
http://www.lacl.fr/gava/cours/M2/IngLog/annexe3.pdf


2026/02/02 13:35 5/5 Versioning - Outillage et bonnes pratiques

Wiki SIO Chaptal - https://wiki.siochaptalqper.fr/

Commenter précisément

La gestion de version permet de retracer l’historique des modifications apportées au code. Sans un
commentaire précis et significatif, l’historique est inexploitable et la gestion de versions ne présente
que peu d’intérêt. Un effort conséquent est donc à produire dans la rédaction des
commentaires de COMMIT.

From:
https://wiki.siochaptalqper.fr/ - Wiki SIO Chaptal

Permanent link:
https://wiki.siochaptalqper.fr/doku.php?id=bloc2:prog:gen:versioning-prat&rev=1745312158

Last update: 2025/04/22 10:55

https://wiki.siochaptalqper.fr/
https://wiki.siochaptalqper.fr/doku.php?id=bloc2:prog:gen:versioning-prat&rev=1745312158

	Versioning - Outillage et bonnes pratiques
	Rappel
	Git
	Principes
	Les principales opérations Git
	Usages
	Références

	SVN
	Les principales opérations SVN
	Organisation SVN

	Bonnes pratiques
	Gestion macroscopique du développement
	Synchronisation descendante
	Commenter précisément



